473 research outputs found

    Robust Speaker Recognition Using Speech Enhancement And Attention Model

    Get PDF
    In this paper, a novel architecture for speaker recognition is proposed by cascading speech enhancement and speaker processing. Its aim is to improve speaker recognition performance when speech signals are corrupted by noise. Instead of individually processing speech enhancement and speaker recognition, the two modules are integrated into one framework by a joint optimisation using deep neural networks. Furthermore, to increase robustness against noise, a multi-stage attention mechanism is employed to highlight the speaker related features learned from context information in time and frequency domain. To evaluate speaker identification and verification performance of the proposed approach, we test it on the dataset of VoxCeleb1, one of mostly used benchmark datasets. Moreover, the robustness of our proposed approach is also tested on VoxCeleb1 data when being corrupted by three types of interferences, general noise, music, and babble, at different signal-to-noise ratio (SNR) levels. The obtained results show that the proposed approach using speech enhancement and multi-stage attention models outperforms two strong baselines not using them in most acoustic conditions in our experiments.Comment: Acceptted by Odyssey 202

    Speaker Re-identification with Speaker Dependent Speech Enhancement

    Get PDF
    While the use of deep neural networks has significantly boosted speaker recognition performance, it is still challenging to separate speakers in poor acoustic environments. Here speech enhancement methods have traditionally allowed improved performance. The recent works have shown that adapting speech enhancement can lead to further gains. This paper introduces a novel approach that cascades speech enhancement and speaker recognition. In the first step, a speaker embedding vector is generated , which is used in the second step to enhance the speech quality and re-identify the speakers. Models are trained in an integrated framework with joint optimisation. The proposed approach is evaluated using the Voxceleb1 dataset, which aims to assess speaker recognition in real world situations. In addition three types of noise at different signal-noise-ratios were added for this work. The obtained results show that the proposed approach using speaker dependent speech enhancement can yield better speaker recognition and speech enhancement performances than two baselines in various noise conditions.Comment: Acceptted for presentation at Interspeech202

    Contextual Joint Factor Acoustic Embeddings

    Get PDF
    Embedding acoustic information into fixed length representations is of interest for a whole range of applications in speech and audio technology. Two novel unsupervised approaches to generate acoustic embeddings by modelling of acoustic context are proposed. The first approach is a contextual joint factor synthesis encoder, where the encoder in an encoder/decoder framework is trained to extract joint factors from surrounding audio frames to best generate the target output. The second approach is a contextual joint factor analysis encoder, where the encoder is trained to analyse joint factors from the source signal that correlates best with the neighbouring audio. To evaluate the effectiveness of our approaches compared to prior work, two tasks are conducted -- phone classification and speaker recognition -- and test on different TIMIT data sets. Experimental results show that one of the proposed approaches outperforms phone classification baselines, yielding a classification accuracy of 74.1%. When using additional out-of-domain data for training, an additional 3% improvements can be obtained, for both for phone classification and speaker recognition tasks.Comment: Published at SLT202

    Unsupervised Acoustic Unit Representation Learning for Voice Conversion using WaveNet Auto-encoders

    Get PDF
    Unsupervised representation learning of speech has been of keen interest in recent years, which is for example evident in the wide interest of the ZeroSpeech challenges. This work presents a new method for learning frame level representations based on WaveNet auto-encoders. Of particular interest in the ZeroSpeech Challenge 2019 were models with discrete latent variable such as the Vector Quantized Variational Auto-Encoder (VQVAE). However these models generate speech with relatively poor quality. In this work we aim to address this with two approaches: first WaveNet is used as the decoder and to generate waveform data directly from the latent representation; second, the low complexity of latent representations is improved with two alternative disentanglement learning methods, namely instance normalization and sliced vector quantization. The method was developed and tested in the context of the recent ZeroSpeech challenge 2020. The system output submitted to the challenge obtained the top position for naturalness (Mean Opinion Score 4.06), top position for intelligibility (Character Error Rate 0.15), and third position for the quality of the representation (ABX test score 12.5). These and further analysis in this paper illustrates that quality of the converted speech and the acoustic units representation can be well balanced.Comment: To be presented in Interspeech 202

    Supervised Speaker Embedding De-Mixing in Two-Speaker Environment

    Full text link
    Separating different speaker properties from a multi-speaker environment is challenging. Instead of separating a two-speaker signal in signal space like speech source separation, a speaker embedding de-mixing approach is proposed. The proposed approach separates different speaker properties from a two-speaker signal in embedding space. The proposed approach contains two steps. In step one, the clean speaker embeddings are learned and collected by a residual TDNN based network. In step two, the two-speaker signal and the embedding of one of the speakers are both input to a speaker embedding de-mixing network. The de-mixing network is trained to generate the embedding of the other speaker by reconstruction loss. Speaker identification accuracy and the cosine similarity score between the clean embeddings and the de-mixed embeddings are used to evaluate the quality of the obtained embeddings. Experiments are done in two kind of data: artificial augmented two-speaker data (TIMIT) and real world recording of two-speaker data (MC-WSJ). Six different speaker embedding de-mixing architectures are investigated. Comparing with the performance on the clean speaker embeddings, the obtained results show that one of the proposed architectures obtained close performance, reaching 96.9% identification accuracy and 0.89 cosine similarity.Comment: Published at SLT202

    Experimental demonstration of composite stimulated Raman adiabatic passage

    Full text link
    We experimentally demonstrate composite stimulated Raman adiabatic passage (CSTIRAP), which combines the concepts of composite pulse sequences and adiabatic passage. The technique is applied for population transfer in a rare-earth doped solid. We compare the performance of CSTIRAP with conventional single and repeated STIRAP, either in the resonant or the highly detuned regime. In the latter case, CSTIRAP improves the peak transfer efficiency and robustness, boosting the transfer efficiency substantially compared to repeated STIRAP. We also propose and demonstrate a universal version of CSTIRAP, which shows improved performance compared to the originally proposed composite version. Our findings pave the way towards new STIRAP applications, which require repeated excitation cycles, e.g., for momentum transfer in atom optics, or dynamical decoupling to invert arbitrary superposition states in quantum memories.Comment: 11 pages, 5 figure

    MetricGAN+/-: Increasing Robustness of Noise Reduction on Unseen Data

    Full text link
    Training of speech enhancement systems often does not incorporate knowledge of human perception and thus can lead to unnatural sounding results. Incorporating psychoacoustically motivated speech perception metrics as part of model training via a predictor network has recently gained interest. However, the performance of such predictors is limited by the distribution of metric scores that appear in the training data. In this work, we propose MetricGAN+/- (an extension of MetricGAN+, one such metric-motivated system) which introduces an additional network - a "de-generator" which attempts to improve the robustness of the prediction network (and by extension of the generator) by ensuring observation of a wider range of metric scores in training. Experimental results on the VoiceBank-DEMAND dataset show relative improvement in PESQ score of 3.8% (3.05 vs 3.22 PESQ score), as well as better generalisation to unseen noise and speech.Comment: 5 pages, 4 figures, Submitted to EUSIPCO 202
    • …
    corecore